AND TECHNOLOGY

NH-58, Delhi-Roorkee Highway, Baghpat Road, Meerut – 250 005 U.P. Sessional Examination - II (SET A) : EVEN Semester 2022-23

Course/Branch: B Tech-I Year (EP-1 TO EP-14)

Semester: II

Subject Name: Engg. Mathematics-II

Max. Marks :60

Subject Code : BAS-203

CO-3 : Apply the concept of convergence in sequence, series and expansion of the function for Fourier series.

CO-4 : Apply the working methods of complex functions to find analytic functions

Section - A (CO - 3) # Attempt both the questions # 30 Marks

Q.1: Attempt any SIX questions (Short Answer Type). Each question is of two marks. $(2 \times 6 = 12 \text{ Marks})$

a)	Discuss the convergence of following	14
	Discuss the convergence of following sequences. $a_n = \frac{n+1}{n}$	(BKL:K2
b)	Test the convergence of following series $2 + 2^2 + 2^3 + 2^4 + \cdots$	Level)
	$\frac{1}{1}$	(BKL:K2
c)	Define Monotonic seguence ::	Level)
	Define Monotonic sequence with example.	(BKL:K1
d)		Level)
	Write Dirichlet's conditions of Fourier series.	(BKL:K2
e)		Level)
	If $f(x)=1$ is expanded in a Fourier series in (0,2) then find the value of a_n	(BKL:K2
El	a_n	Level)
f)	Find b_1 if the function $f(x) = x + x^2$ is expanded in Fourier series in $(-1,1)$.	(BKL:K2
- 1	onpunded in Fourier series in (-1,1).	-
g)	Find the value of the Fourier coefficient a_0 for the function	Level)
- 1	$\begin{cases} 0 & -\pi < x < 0 \end{cases}$	(BKL:K2
	$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$	Level)
- 1	$[x, 0 < x < \pi]$	

Q.2: Attempt any THREE questions (Medium Answer Type). Each question is of 6 marks. (3 \times 6 = 18 Marks)

√a)	Test the series: $\frac{x}{1.2} + \frac{x^2}{3.4} + \frac{x^3}{5.6} + \frac{x^4}{7.8} \dots$	(BKL:K3 Level)
b)	Test the series: $\frac{x}{1} + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} + \cdots$	(BKL:K3 Level)
E)	Obtain the Fourier expansion of $f(x) = x \sin x$, as cosine series in $(0, \pi)$ and hence show that $\frac{1}{1\times 3} - \frac{1}{3\times 5} + \frac{1}{5\times 7} - \frac{1}{7\times 9} + \dots = \left(\frac{\pi-2}{4}\right)$	(BKL:K3 Level)
a)	Obtain the Fourier series for the function $f(x) = \begin{cases} x, & -\pi < x < 0 \\ -x, & 0 < x < \pi \end{cases}$ and hence, show that $1 - \frac{1}{1} + \frac{1}{0} - \frac{1}{16} + \dots = \frac{\pi^2}{12}$.	(BKL:K3 Level)
e)	Find Fourier Series for the function $f(x) = \begin{cases} x, 0 < x < 1 \\ 1 - x, 1 < x < 2 \end{cases}$	(BKL:K3 Level)

Section - B (CO - 4) # Attempt both the questions # 30 Marks

Q.3: Attempt any SIX questions (Short Answer Type). Each question is of two marks. (2 x 6 = 12 Marks)

a)	State the necessary and sufficient conditions for a function $f(z)$ of a complex variable z , to be analytic in a region.	(BKL:K1
b)	Determine p such that the function $f(z) = \frac{1}{2} \log(x^2 + y^2) + i \tan^{-1} \left(\frac{px}{y}\right)$	(BKL:K2 Level)
	is an analytic function. Also find $f'(z)$.	
c)	Define analytic function with an example.	(BKL:K1 Level)
d)	Show that complex function $f(z) = z^3$ is analytic.	(BKL:K2 Level)
e)	Define the harmonic function.	(BKL:K1 Level)
f)	If $u(x,y) = x^2 - y^2$, prove that <i>u</i> satisfies Laplace equation.	(BKL:K2 Level)
g)	The function $f(x) = e^x(\cos y + i \sin y)$ is analytic or not.	(BKL:K2 Level)

Q.4: Attempt any **THREE** questions (Medium Answer Type). Each question is of 6 marks. (3 \times 6 = 18 Marks)

a)	$x^2y^5(x+iy) = 0$	(BKL:K3
۵)	Prove that the function $f(z)$ is defined by $f(z) = \frac{x^2y^5(x+iy)}{x^4+y^{10}}$, $z \neq 0$ and	
	f(0) = 0 satisfy Cauchy-Riemann equation at the origin, yet $f'(0)$ does not exist.	
b)	$(x^3y(y-ix))$	(BKL:K3
	If $f(z) = \begin{cases} \frac{x^3y(y-ix)}{x^6+y^2}; & \text{when } z \neq 0\\ 0; & \text{when } z = 0 \end{cases}$	Level)
	(0; when z = 0	
	Prove that $\frac{f(z)-f(0)}{z} \to 0$ as $z \to 0$ along any radius vector but not as $z \to 0$ in any manner.	
c)		(BKL:K3
	Find the analytic function whose imaginary part is $e^{-x}(x \cos y + y \sin y)$.	Level)
d)	Show that the function $u = \frac{1}{2} log(x^2 + y^2)$ is harmonic. Find the harmonic conjugate of u .	(BKL:K3 Level)
e)	If $u - v = e^x(x \cos x - y \sin y)$ and $f(z) = u + iv$ is analytic function. Find $f(z)$ in terms of z .	(BKL:K3 Level)

Roll No. :

Miet

MEERUT INSTITUTE OF ENGINEERING AND TECHNOLOGY

NH-58, Delhi-Roorkee Highway, Baghpat Road, Meerut – 250 005 U.P.

Sessional Examination - I (SET A) : EVEN Semester 2022-23

Course/Branch: B Tech -I Years (EP-1 TO EP-14)

Semester: II

Subject Name: Engg. Mathematics-II

Max. Marks:60

Subject Code : BAS-203

CO-1 : Apply the mathematical concepts for solving differential equations.
 CO-2 : Apply the concept of Laplace Transform to solve differential equations

Section - A (CO - 1) # Attempt both the questions # 30 Marks

Q.1: Attempt any SIX questions (Short Answer Type). Each question is of two marks. $(2 \times 6 = 12 \text{ Marks})$

<u> </u>	Q.1 : Attempt any BEX questions (Ghort This wei Typo). Each question		
a)	Find the order and degree of the following differential equation $\frac{d^2y}{dx^2} + \sqrt{1 + \left(\frac{dy}{dx}\right)^3} = 0.$	(BKL:K2	
	$\frac{dx^2}{dx^2} + \sqrt{1 + \left(\frac{dx}{dx}\right)} = 0.$	Level)	
Α	Find the order and degree of the following differential equation α		
b)	d^2	(BKL:K2	
7	Find the P L of $\frac{dy}{dx} - y = x^2$	Level)	
	Find the P.I. of $\frac{d^2y}{dx^2} - y = x^2$.		
c) `	d^2v	(BKL:K2	
",	Solve $\frac{d^2y}{dx^2} + 4y = \sin^2 2x$	Level)	
d) ($(D_1 1)^3 = 2e^{-x}$	(BKL:K2	
	Solve $(D+1)^3 y = 2e^{-x}$	Level)	
e) =	Find the value of1 e ^{-3x} cos(x)	(BKL:K2	
	$\frac{1}{(D+3)} = \frac{1}{(D+3)}$	Level)	
100		(BKL:K2	
f) <	Find C.F of $x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} - 12y = 0$.		
	Find C.F of $x \frac{dx^2}{dx^2} + 2x \frac{dx}{dx} = 12y$ o.	Level)	
(g)	dx = dy	(BKL:K1	
"	Solve the simultaneous equations $\frac{dx}{dt} = 3y, \frac{dy}{dt} = 3x.$	Level)	
	લા હા		

Q.2: Attempt any THREE questions (Medium Answer Type). Each question is of 6 marks. (3 \times 6 = 18 Marks)

Q.2	. Attempt any Titles questions (Western 1997)	
a)	Solve $\frac{d^2x}{dt^2} + \frac{dy}{dt} + 3x = e^{-t}, \frac{d^2y}{dt^2} - 4\frac{dx}{dt} + 3y = \sin 2t$	(BKL:K3 Level)
	Solve $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = \log x \sin(\log x)$	(BKL:K3 Level)
c)	Solve the following differential equation by changing the independent variable $x \frac{d^2y}{dx^2} + (4x^2 - 1)\frac{dy}{dx} + 4x^3y = 2x^3.$	(BKL:K3 Level)
d) _	Apply method of variation of parameters to solve: $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$.	(BKL:K3 Level)
e)	An inductance L of 2.0 H and a resistance R of 20 Ω are connected in series with an e.m.f. of E volt. If the current i is zero when $t = 0$, find the current i at the end of 0.01 second if $E = 100 V$, using the following differential equation $L \frac{di}{dt} + Ri = E$.	(BKL:K3 Level)

Section - B (CO - 2) # Attempt both the questions # 30 Marks

O 3 : Attempt on System = B (CO - 2) # Attempt both the questions # 30 Marks				
Q.3	2) Lach question (Short Answer Type). Each question is of two marks (2 x 6 = 12 Marks)			
	The state of the s	(BKL:K2		
b)	Find I (45 and I)	Level)		
		(BKL:K2		
`c)	I find the Laplace Transform of $a(t) = 1$	Level)		
		(BKL:K2		
d)	Find Laplace Transform of $\int_0^t \int_0^t \cos au \ du \ du$	Level) (BKL:K2		
	tina Eaplace Transform of J ₀ J ₀ cos aa aa aa	Level)		
e)	Evaluate: $L^{-1}\left(\frac{pe^{-2p}}{r^2-1}\right)$	(BKL:K2		
	Evaluate: $E \left(\frac{p^2-1}{p^2-1}\right)$	Level)		
f) e	Find the Inverse Landage Transform of Log (1 1 1)	(BKL:K2		
	Find the Inverse Laplace Transform of $log \left(1 + \frac{1}{p^2}\right)$	Level)		
BIR	Find the Inverse Laplace Transform of $\frac{4p+8}{v^2+4p+5}$	(BKL:K2		
	\mathbb{F}^2+4p+5	Level)		
Q.4	4: Attempt any THREE questions (Medium Answer Type). Each question is of 6 marks. (3 x 6 = 18	Marks)		
a)	Find inverse Laplace Transform of $\frac{p^2+2p+3}{(p^2+2p+2)(p^2+2p+5)}$	(BKL:K3		
	Find inverse Laplace Transform of $\frac{1}{(p^2+2p+2)(p^2+2p+5)}$	Level)		
b)	Prove that $\int_{t=0}^{\infty} \int_{u=0}^{t} e^{-t} \frac{\sin u}{u} du dt = \frac{\pi}{4}.$	(BKL:K3		
	Prove that $\int_{t=0}^{\infty} \int_{u=0}^{\infty} e^{-t} \frac{dudt - \frac{1}{4}}{u} dt = \frac{1}{4}$	Level)		
c)	Fig. 1.4 F. 1 F. C. C.1 C.11 mine function of main 10	(BKL:K3		
4	Find the Laplace Transform of the following function of period 2a:	Level)		
Lan.	$\left(\frac{h}{t}\right)$, $0 < t < a$			
	$f(t) \begin{cases} \frac{h}{a}t, & 0 < t < a \\ \frac{h}{a}(2a-t), & a < t < 2a \end{cases}$	The state of the s		
d)	State Convolution theorem and hence find inverse of Laplace Transform of following function	(BKL:K3		
0		Level)		
	$F(p) = \left\{ \frac{p^2}{(p^2 + 4)^2} \right\}$	(BKL:K3		
e) \	Solve the following simultaneous DE's by using Laplace transform	Level)		
	y v			
3	$\frac{dx}{dt} + 4\frac{dy}{dt} - y = 0, \frac{dx}{dt} + 2y = e^{-t} \text{With conditions } x(0) = y(0) = 0.$			

Roll No. :

MEERUT INSTITUTE OF ENGINEERING AND TECHNOLOGY NH-58, Delhi-Roorkee Highway, Baghpat Road, Meerut – 250 005 U.P.

Pre University Test (PUT): Even Semester 2022-23

Miet

: B Tech -Ist Year

Semester Max. Marks

: 100 : 180 min

: II

Course/Branch Subject Name

: Engineering Maths-II (SET-B)

(EP-1 to EP-14).

Time

Subject Code

: Apply the mathematical concepts for solving differential equations.

• Apply the concept of Laplace Transform to solve differential equations
• Apply the concept of convergence in sequence, series and expansion of the function by Fourier series.
• Apply the working methods of convergence in sequence, series and expansion of the function by Fourier series. Apply the concept of Taylor's series and Laurent's series for complex function and evaluation of integrals.

CO-2 CO-3 CO-4

Section - A # 20 Marks (Short Answer Type Questions) Attempt ALL the questions. Each Question is of 2 marks (10 x 2 = 20 marks)

	CO-		Section - A # 20 Warks 1 Feeh Question is of 2 marks (10			
	Attempt ALL the questions. Each Question is of 2 marks					
	Action # Attempt ALL the questions, Day 4 (dv) 8 0 are and					
Q.NO)	COx	Section – A # 20 Warks Question is of 2 marks (Autompt ALL the questions. Each Question is of 2 marks) [Question Description # Attempt ALL the questions. Each Question is of 2 marks] [Question Description # Attempt ALL the questions of $\left(\frac{d^3y}{dx}\right)^4 - 6x^2\left(\frac{dy}{dx}\right)^8 = 0$ are and			
1	IA	COI	Question Description # Attempt ALL the questions. Each Question is of 2 marks as $\frac{dy}{dx} = 0$ are and The degree and order of the differential equation $\left(\frac{d^3y}{dx^3}\right)^4 - 6x^2\left(\frac{dy}{dx}\right)^8 = 0$ are and			
-			The degree and			
			n Hoular Integral Over			
	В	COI	Find the Particular $\frac{1}{2}$ $\frac{1}$			
	c	CO2	Find the Particular May $Find \text{ Laplace Transform of } F(t) = \begin{cases} e^{t-a}, & t > a \\ 0, & t < a \end{cases}$ $Find \text{ Laplace Transform of } F(t) = \begin{cases} e^{t-a}, & t > a \\ 0, & t < a \end{cases}$			
			Till eplace Transform of Costerous			
-	D	CO2	Discuss convergence of $\{1,2,2^2,2^3,\}$ $f(x) = x\cos x \text{in } -\pi < x < \pi.$			
-	E	CO3	Discuss convergence of $\{1,2,2^2,2^3,\}$ Find Fourier coefficient a_n for $f(x) = x \cos x$ in $-\pi < x < \pi$.			
-	F	CO3	Find Fourier coefficient $a_R = \frac{1+z}{z}$			
-	G	CO4	Find Fourier coefficient u_n for y (so Find Invariant points of transformation $w = \frac{1+z}{1-z}$) Find Invariant points of transformation $w = \frac{1+z}{1-z}$			
-		CO4	Define conformal mapping			
	Н	705	$\frac{e^z}{dz} dz$			
	1	CO5	Evaluate $J_{ z =\frac{1}{2}} z^{2+1}$			
- 100	1	CO5	Evaluate $\int_{ z =\frac{1}{2}} \frac{e^z}{z^2+1} dz$. Define singular point an analytic function. Find nature and location of the singularity of $f(z) = \frac{z-\sin z}{z^2}$. Section – B #30 Marks (Long / Medium Answer Type Questions) Section – B #30 Marks (Long / Medium Answer Type Questions)			
			Section - B #30 Marks (Long / Medium Answer Type Question - B #30 Marks (Long / Medium Answer Type Question - B was (5 x 6 = 30 marks)			
	ATT the questions. Each Question and					

Attempt ALL the questions. Each Question is of 6 marks (5 x 6 = 30 marks)

	Attempt ALL the questions. Each Question is of 6 marks $t = 0$
	Solve the simultaneous equations $\frac{dx}{dt} + 5x - 2y = t$, $\frac{dy}{dt} + 2x + y = 0$ being given $x = 0$, $y = 0$ when $t = 0$.
Q.2 (CO-1)	$\frac{d^2y}{dx} + (3\sin x - \cot x)\frac{dy}{dx} + 2y\sin^2 x = e^{-\cos x}\sin^2 x.$
Q.3 (CO-2)	Solve by changing the independent variable $\frac{dx^2}{dx}$ $\frac{dx}{dx}$ $\frac{dx}{dx}$ $\frac{dx}{dx}$ $\frac{dx}{dx}$ Find the Laplace Transform of the triangular wave function of period 2c given by $f(t) = \begin{cases} t, & 0 < t \le c \\ 2c - t, & c < t < 2c \end{cases}$ Using Laplace Transform, solve initial value problem $\frac{d^2y}{dt^2} + 9y = 6\cos 3t$; $y(0) = 0$, $y'(0) = 0$
Q.4 (CO-3)	Test convergence: $1 + \frac{x}{2} + \frac{1.3}{2.4}x^2 + \frac{1.3.5}{2.4.6}x^3 + \cdots$ Prind the half-range sine series of $f(x) = (lx - x^2)$ in the interval $(0, l)$. Hence, deduce that $\frac{\pi^3}{32} = 1 - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \cdots$ $(x^3(1+l)-y^3(1-l)) = 1.0$
Q.5 (CO-4)	Prove that the function $f(z)$ defined by $f(z) = \begin{cases} \frac{x^3(1+t)-y^3(1-t)}{x^2+y^2}; & z \neq 0 \\ 0; & z = 0 \end{cases}$ satisfies C.R. equations at the origin yet $f'(0)$ does not exist. OR Show that $u(x,y) = x^3 - 4xy - 3xy^2$ is harmonic. Find its harmonic conjugate $v(x,y)$ and the corresponding analytic function $f(z) = u + iv$.

Q.6	Verify Cauchy's theorem for the function $1 \pm i$, $-1 \pm i$.	$f(z) = 3z^2 + iz - 4$ along the perimeter of the	e square with vertices
(CO-5)	State Cauchy Integral formula. Hence evaluate $\int_C \frac{1}{(z^2+4)^2} dz$ where C is the	OR ne circle $ z-i =2$.	

Section - C # 50 Marks (Medium / Long Answer Type Questions) Attempt ALL the questions. Each Question is of 10 marks.

Q.7 (CO-1)	Attempt any TWO questions. Each question is of 5 marks.
~a.	Solve $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 8(e^{2x} + \sin 2x + x^2)$
b.	An R-L circuit has an e.m.f. given(in volts) by $4 \sin t$, a resistance of 100 ohms, an inductance of 4 henries with no initial current, Find the current at any time t.
C.	Use the variation of parameter method to solve the differential equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - y = x^2e^x$.

Q.8 (CO-2)	Attempt any TWO questions. Each question is of 5 marks.	
a.	Find Laplace Transform of $e^{-4t} \int_0^t \frac{1-\cos 2t}{t} dt$	
va.	Find the inverse Laplace Transform of $\log \left(\frac{p^2 + 4p + 5}{p^2 + 2p + 5} \right)$	
√b.	State Convolution Theorem and hence evaluate $L^{-1}\left\{\frac{p}{(p^2+1)(p^2+4)}\right\}$.	· View

Q.9 (CO-3)	Attempt any ONE question. Each question is of 10 marks.	47
9.0.0		
Va.	Obtain the Fourier series for the function $f(x) = \begin{cases} x, & -\pi < x \le 0 \\ -x, & 0 < x < \pi \end{cases}$ and hence, show that $\frac{1}{12} + \frac{1}{72} + \frac{1}{52} + \cdots = \frac{\pi^2}{9}.$	
b.	Find Fourier Series for function $f(x) = \begin{cases} x, & 0 < x < 1 \\ 1 - x, & 1 < x < 2 \end{cases}$ and hence deduce that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$	$=\frac{\pi^2}{8}$

	Q.10 (CO-4)	Attempt any TWO questions. Each question is of 5 marks.
1	a.	Find Mobius transformation that maps points $z = 0, -i, 2i$ into the points $w = 5i, \infty, -\frac{i}{3}$ respectively.
	√b .	F ind the analytic function $f(z) = u + iv$, if $u - v = (x - y)(x^2 + 4xy + y^2)$.
	ve.	Show that $f(z) = \log z$ is analytic everywhere in the complex plane except at the origin and its derivative is $\frac{1}{z}$

Q.11 (CO-5)	Attempt any ONE question. Each question is of 10 marks.	
а.	Expand $\frac{1}{(z^2+4z+3)}$ in the regions: (i) $ z < 1$, (ii) $1 < z < 3$, (iii) $ z > 3$, (iv) $1 < z+1 < 2$.	
b.	State Cauchy's Residue Theorem. Determine the poles and residues at each pole for: $\frac{z-1}{(z+1)^2(z-2)}$ and hence evaluate $\oint_C f(z)dz$, where C is the circle $ z-i =2$	

Laplace - P2 =